
Kevin Jun - June 11, 2020

Speeding up Smith-Waterman
using Numba

CPU and GPU (CUDA) implementations

Introduction

• DP algorithm for accurate and thorough sequence alignment

• Polynomial runtime:

- , : length of sequences

- : number of sequences in database

• Python’s Numba package

- Just-in-time (JIT) compilation compiles functions to
machine code at runtime

- Optimizes loops and computations on numpy arrays

O(n * m * l)

n m

l
Wikipedia

Recurrence relation for Smith Waterman

Background

• Many implementations to speed up Smith Waterman using computer architecture and
engineering

• SIMD architectures for vectorization

• QIAGEN

• Only company to offer both SSE-vectorized and FPGA solutions

• Speed-ups of more than 110 over other standard implementations

• SWIPE software

• Open-source; capable of comparing residues from sixteen different database sequences

• 106 billion cell updates per second on dual Intel Xeon X5650 6-core system

Methodology/Approach

• Needed to refactor serial code for Numba/CUDA quirks

- Only compiles Python functions

- Numba likes loops and numpy arrays

- Typing cannot be ambiguous

- No support for many non-primitive Python data types

- nopython mode is faster but stricter

- arrays cannot be instantiated inside function; required empty arrays to be passed to
function

• One thread per sequence in database

Results

• Numba code should be timed after
compilation

• CPU Numba

- 272 speedup over Serial

• CUDA

- 8,457 speedup over CPU Numba

- 2,304,163 speedup over Serial

- , was the
“fastest”; unsure what this means
regarding GPU saturation

gridDim = 8 blockDim = 64

 Implementation Runtime (seconds)

 Serial 853.69264108

 Numba CPU 3.13341230

 CUDA <16,32> 0.0004447

 CUDA <8,64> 0.0003705

 CUDA<4,128> 0.0003776

 CUDA<2,256> 0.0003848

Discussion

• With so many other faster implementations, now sure how mine will help the field

• Good case study in using HPC and CUDA to achieve speedups for algorithms with “time floors”

• Liked to do

• Test against entire pdbaa database - unable to because Bio.SeqIO does not error check
FASTA files

• More rigorous CUDA testing - requires larger input and compilation information (can’t find
this in the documentation) to calculate GPU saturation

• Multi-dimensional grid and block kernel launches

• Is there a better way to divide up work than one thread per sequence?

References

“CUDA Programming.” Introduction to Numba: CUDA Programming, nyu-cds.github.io/python-numba/05-cuda/.

Harris, Mark, et al. “Numba: High-Performance Python with CUDA Acceleration.” NVIDIA Developer Blog, 29 Apr. 2020, devblogs.nvidia.com/numba-python-cuda-acceleration/.

Harrism. “Harrism/numba_examples.” GitHub, github.com/harrism/numba_examples/blob/master/mandelbrot_numba.ipynb.

“Notes on Literal Types.” Notes on Literal Types - Numba 0.50.0.dev0+236.g64fbf2b-py3.7-Linux-x86_64.Egg Documentation, numba.pydata.org/numba-doc/dev/developer/literal.html.

“Supported Python Features in CUDA Python.” Supported Python Features in CUDA Python - Numba 0.50.0.dev0+236.g64fbf2b-py3.7-Linux-x86_64.Egg Documentation, numba.pydata.org/

numba-doc/dev/cuda/cudapysupported.html.

“Writing CUDA Kernels.” Writing CUDA Kernels - Numba 0.50.0.dev0+236.g64fbf2b-py3.7-Linux-x86_64.Egg Documentation, numba.pydata.org/numba-doc/dev/cuda/kernels.html.

“A ~5 Minute Guide to Numba.” A ~5 Minute Guide to Numba - Numba 0.49.1-py3.6-Macosx-10.7-x86_64.Egg Documentation, numba.pydata.org/numba-doc/latest/user/5minguide.html.

